首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21740篇
  免费   2135篇
  国内免费   1048篇
电工技术   1155篇
综合类   1237篇
化学工业   6929篇
金属工艺   1618篇
机械仪表   822篇
建筑科学   624篇
矿业工程   511篇
能源动力   2299篇
轻工业   2118篇
水利工程   128篇
石油天然气   924篇
武器工业   572篇
无线电   1208篇
一般工业技术   2728篇
冶金工业   1156篇
原子能技术   226篇
自动化技术   668篇
  2024年   40篇
  2023年   478篇
  2022年   553篇
  2021年   789篇
  2020年   769篇
  2019年   736篇
  2018年   665篇
  2017年   819篇
  2016年   777篇
  2015年   701篇
  2014年   1118篇
  2013年   1163篇
  2012年   1343篇
  2011年   1577篇
  2010年   1255篇
  2009年   1180篇
  2008年   1084篇
  2007年   1402篇
  2006年   1310篇
  2005年   1122篇
  2004年   1069篇
  2003年   876篇
  2002年   809篇
  2001年   629篇
  2000年   546篇
  1999年   413篇
  1998年   298篇
  1997年   269篇
  1996年   199篇
  1995年   185篇
  1994年   168篇
  1993年   101篇
  1992年   114篇
  1991年   82篇
  1990年   60篇
  1989年   45篇
  1988年   49篇
  1987年   23篇
  1986年   15篇
  1985年   21篇
  1984年   20篇
  1983年   9篇
  1982年   14篇
  1981年   4篇
  1980年   7篇
  1979年   7篇
  1977年   2篇
  1976年   2篇
  1973年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A novel radiation grafted ETFE based proton conducting membrane was prepared by double irradiation grafting of two different monomers. The intrinsic oxidative stability of the ETFE-g-poly(styrene sulfonic acid-co-divinylbenzene) membrane was improved by reducing the gas crossover through incorporation of polymethacrylonitrile (PMAN) containing the strong polar nitrile group. A fuel cell test was carried out at 80 °C under constant current density of 500 mA cm−2 for a time exceeding 1′900 h. The incorporation of PMAN considerably improves the interfacial properties of the membrane-electrode assembly. No significant change in the membrane hydrogen crossover and performance over the testing time was observed, except for a measured decrease in the membrane ohmic resistance after 1′000 h. The combination of the double irradiation induced grafting with the use of the PMAN as gas barrier in addition to its chelating abilities (e. g. Ce3+) offers a promising strategy to develop more durable membranes for fuel cells.  相似文献   
82.
83.
Based on the shear-transformation-zone (STZ) theory, we propose a constitutive model for describing homogeneous elastoplastic deformation of amorphous solids where the interaction of shear transformations and free volume dynamics is incorporated. This theoretical model can reproduce the stress overshoot behavior that shows the dependence of strain rate, temperature, STZ population and dilatancy of systems. It reveals that the stress overshoots its steady state value due to the delayed activation of shear transformations that results from the insufficient free volume in the system. However, the subsequent strain softening (stress drop) is attributed to the shear-induced dilatation that is a result of the positive interplay between shear transformations and free volume creation, the latter playing the dominant role. Our analysis also demonstrates that the STZs, as basic carriers of amorphous plasticity, govern the yielding of the system, whereas the free volume dynamics significantly affects the post-yielding behaviors.  相似文献   
84.
This study aims to develop a new type of peristaltic pump that transports high-viscosity and solid–liquid mixture fluids. Pumps capable of transporting such fluids are essential in various situations such as factory transportation, outdoors, and emergencies. These fluids are conventionally transported by positive-displacement and rotodynamic pumps. However, solid–liquid fluids could collide with the impeller of the rotodynamic pump and thereby damage the pump, whereas the positive-displacement pump must be sufficiently large to apply high pressure to the transported fluid. A small pump that can transport these fluids would save factory space and enable outdoor applications such as dredging operations. Thus, we adopted earthworm peristalsis as a model mechanism of fluid transport within a standard plumbing infrastructure. The insertion-type peristaltic pump developed in this study uses an artificial rubber muscle to achieve an earthworm-like mechanism. The capability and energy efficiency of the mechanism is evaluated in water transportation experiments.  相似文献   
85.
While the use of amorphous solid dispersions to improve aqueous solubility is well documented, little consideration has traditionally been given to the finished dosage form. The objective of this study was to evaluate the dissolution performance of amorphous solid dispersions containing a dispersed superdisintegrant with binding properties. KinetiSol® dispersing was used to thermally process hypromellose acetate succinate-based compositions containing the drug substance nifedipine (NIF) and a highly compressible grade of low-substituted hydroxypropyl cellulose (New Binder Disintegrants; NBD-grade). Solid-state analysis demonstrated that compositions were rendered amorphous during processing. Tablets containing intra-dispersion NBD were found to exhibit non-sink dissolution performance similar to milled intermediate, demonstrating excellent disintegration characteristics. Conversely, tablets without intra-dispersion NBD were found to release significantly less NIF during dissolution analysis due to particle agglomeration. It was determined that compressibility and particle wetting increased as the level of intra-dispersion NBD increased.  相似文献   
86.
87.
《Ceramics International》2015,41(4):5881-5887
Large amounts of MgAl2O4 micro-rods were successfully synthesized using the molten-salt technology. The effect of KCl contents on the formation of MgAl2O4 micro-rods was investigated. The structure and morphology of MgAl2O4 were investigated by means of powder X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy, respectively. The experimental results showed that the contents of KCl significantly influenced the formation of MgAl2O4 micro-rods. MgAl2O4 micro-rods could be prepared at 1150 °C with a weight ratio of 100:1 between the salt and the starting materials. The formation of MgAl2O4 micro-rods could be suggested to be due to the inhomogeneous nucleation and orientated growth perpendicularly to the surfaces of Al2O3 grains. An impedance-type humidity sensor was finally fabricated based on the as-prepared MgAl2O4 micro-rods. According to tests of the humidity performance, MgAl2O4 micro-rods might be suitable for high-performance humidity sensors.  相似文献   
88.
Cable‐shaped supercapacitors (SCs) have recently aroused significant attention due to their attractive properties such as small size, lightweight, and bendability. Current cable‐shaped SCs have symmetric device configuration. However, if an asymmetric design is used in cable‐shaped supercapacitors, they would become more attractive due to broader cell operation voltages, which results in higher energy densities. Here, a novel coil‐type asymmetric supercapacitor electrical cable (CASEC) is reported with enhanced cell operation voltage and extraordinary mechanical‐electrochemical stability. The CASECs show excellent charge–discharge profiles, extraordinary rate capability (95.4%), high energy density (0.85 mWh cm−3), remarkable flexibility and bendability, and superior bending cycle stability (≈93.0% after 4000 cycles at different bending states). In addition, the CASECs not only exhibit the capability to store energy but also to transmit electricity simultaneously and independently. The integrated electrical conduction and storage capability of CASECS offer many potential applications in solar energy storage and electronic gadgets.  相似文献   
89.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   
90.
Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号